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Secondary 3

Additional Mathematics — Algebra part1I

1. Advanced Algebra

Advanced Algebra

Let's take algebra to the next level in A-Math.

2. Polynomial

More Quadratic Factorization

In E-Math we learned to factor quadratics when the leading coef-
ficient is 1. When it isn't, dividing can create messy fractions, so
we use a method called “splitting the middle term”.

ax*+bx+c = (ax+m)(x +n)

We need to find 2 numbers p and g that satisfies the following:
. p X g=axc
ep+q=0>
Once we do, we can rewrite the middle term to form:
ax2+px+qx+c
We can group the resultant terms to factors the expression into
(ax + m)(x + n), where m and n are determined from p and q.

S
Example 1:
Factorize 3x* + x — 10.
Step 1):  Find the appropriate values of p and q.
— pg=3(-10)
Prq = —30 (1Y)
- ptq=1
p=1—gq —@2)
— Sub (2) into (1):
(1—-g)g=-30
¢ —-q-30=0
(g-6)g+5)=0
gq=6 or q=-5
— Arbitrarily choose g = 6 and sub into (2):
p=1-6=-5
Step 2):  Factorize the result.
- 3x*+x—10=3x"—5x+6x— 10
= (3x® + 6x) + (=5x — 10)
=3x(x+2)—-5(x+2)
=Bx-=5)(x+2)
Discriminant 274

The discriminant is an expression that reveals the nature of roots
in a quadratic equation (real or complex, distinct or repeated)
without needing to solve the equation.

Discriminant

Nature of Roots

2 distinct real roots

2 equal real root

b? — 4ac > 0
b? —4dac =0
b? —4ac <0

BITW:

0 real roots and
2 complex roots

This might be our first encounter with complex numbers. Don't worry
about them, they are not part of the O-Level syllabus. For now, we only

care that no real roots exist. By real, we mean the regular kinds of numbers we have

been using so far.

J
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3. Partial Fractions

Example 1:
Find the range of values of k for which the equation 3x* — 2x = k — 1
has 2 distinct real solutions.

- 3x*-2x=k-1
3x2—2x+(1—-k)=0
— 2 distinct real roots exist.
= b*—4dac>0
(—2)*—4(3)(-k+1) >0
2

k> =
3

Example 2:
Find the value of k for which the circle (x — 2)* + (y — 3)? = k touches
the line y = —x + 5 at exactly one point.

- (x-2+(y-3)P=k
y=-x+5

— Sub (2) into (1):
(x—22+(—x+5-3) =k
X —4x+4+x*—4dx+4=k
2x* —8x+(8—k)=0

— 1 intersect between (1) and (2).

— (D
—((2)

— @3

U

(3) has one root.

b —4ac=0

(-8 —-4(2)(8—-k)=0
k=0

U

Example 3: 1
Find the range of values of k such that f(x) = (2k — 1)x* + 3kx + = has
2 distinct real roots. .

Step 1):  Find values of k where f(x) is quadratic.
—  f(x) is only quadratic if the leading coefficient is non-zero.
= 2k—1%0
k + %
Step 2): Determine the discriminant D of f(x).

— 2 distinct real roots exist.
= b —4ac>0
(3k)? — 4(2k — 1) (1) >0
9k* —2k+1>0
— D(x)=9x*—2x+1
Step 3):
— The leading coefficient of D(x), 9 > 0, is positive.
= D(x)>0
b? — dac = (—2)* — 4(9)(1)
=-32<0
D(x) has no real roots.

Determine if D(x) > 0.

D(x) does not cross the x-axis.
D(x) >0 )
f(x) has 2 distinct real roots for all values of k # 3

bl
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Simultaneous Equations
Solving simultaneous equations involves finding roots, which cor-
respond to points where the graphs of the equations intersect.

\ T4

Case 1:
Two Solutions

Case 2:
One Solution

Case 3:
No Solutions

y=ax?+bx+c
y=mx+c

y=ax’+bx+c
y=mx+c,

y=ax’+bx+c
y=mx+c

y

¢

y

C

N/

C3

two intersects

one intersect

no intersects

l

Equate and Simplify

l

y=ax?+(b—m)x

y=ax*+ (b—m)x

y =ax*+ (b—m)x

+(c—¢) +(c—c) +(c—c)
x X T L

two distinct real roots

one distinct real root
(two equal real roots)

no real roots
(two complex roots)

Example 1:
Solve the simultaneous equations.
y—x=1,
xt+yt =25
- y-x=1 — ()
y=x+1 —(2)
- x*+y*=25
— Sub (1) into (2):
X+(x+1)?2=25
2x*+2x—24=0
20x+4)(x-3)=0
x=—-4 or x=3
—  Sub x = —4into (1):
y=—4+1=-3
— Sub x =3into (1):
y=3+1=4
- (y)=(-4-3) or (xy)=G4)

Example 2:

a)  Given that f(x) = x* — 5x + 6. Find the range of values such that

the line y = x + k does not intersect the curve y = f(x).

b)  Determine the value of k and the (x, y) coordinate for which
y = x + k is a tangent to the curve y = f(x).

a) -
b) -

y=x*—5x+6
y=x+k
Sub (1) into (2):
x*—5x+6=x+k

x> —6x+(6-k)=0

There are no intersects.

b? — 4ac < 0

(—6)? —4(1)(6—-k) <0

k<-3

— @)
— @)

—3)

y = x +kistangentto y = f(x).
There is exactly 1 intersect.

b? —4ac =0
(—6)? —4(1)(6-k)=0
k=-3
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Algebra

— Sub k = -3 into (3):
x> —6x+[6—(=3)]=0
(x=3)2%=0
x=3

— Subx =3,k =-3into (2):
y=3+(-3)=0

Tangency occurs at k = —3 with the
tangent point at (3,0).

Quadratic Inequalities
We've used the number line for compound inequalities in E- Math
Now, let's apply it to solve quadratic inequalities too.

(x—a)x—=b)>0 y=((x-a)(x-0b)

+ 0 = i+
— Tl /
(x—a)(x—-b) <0 >

| , a b x
+ — .+
a b
x? > a®
-a a
x? < a®
-a a
S
Example 1:

Determine all real solutions to the following inequalities and represent
the solution on a number line.

a) (x+2)(x—-6)>0
c) x*-2x—-4<0

b) 15x—3x*-12>0

a) Step 1): Find regions of sign changes.
— Let F(x) =(x+2)(x —6)
— Sign changes when F(x) crosses the x-axis.
= (x+2)(x—6)=0
xX=-2 or x=6
— Boundaries: x = —2and x = 6

— Distinct regions: (o, —2], [-2, 6], [6, o)

Step 2):  Find the signs of each region by testing values.
—  Sub x = -3 into F(x):
(-3+2)(-3-6)=(-1)}(-9)=9>0
— Sub x = 0 into F(x):
(0+2)(0—6)=(2)(—6)=—12<0
— Sub x = 7 into F(x):
(7+2)(7-6)=9)(1)=9>0
Step 3): Determine regions that satisfy condition.
- (x+2)(x—-6)=>0
= Looking for positive regions (inclusive of 0).
= x<—-2 or x>6
+ 1 - ! +
f f
-2 6
b) - 15x—3x*-12>0

—3(x—1)(x—4)>0
(x—1D(x-49)<o0
— Boundaries: x =1and x = 4

— After testing values: 1 < x < 4
o——O

+ 1
1
1

1

B -
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) — x2-2x-4<0
(x—1P2-(-1)?%-4<0
(x—17<5
-V5<x-1<+5

1-V5<x<1+45

— Boundaries: x =1—+5and x =1+ /5
o —0
1 1
1 1
T T

1-45 1445

Example 2:
Find the range of values of x for which 4 < (x — 3)? < 25. Represent the
solution on a number line.

Step 1):  Solve lower bound (x — 3)* > 4.
(x-3)>4

x—3<—J4 or x—3>+4
x<1l or x>5

Step 2):  Solve upper bound (x — 3)* < 25.

(x—3)*<25
—J25<x—-3<+25
-2<x<8

Step 3):  Combine the constraints.
i x<1l or x>5
ii. —-2<x<8
e—O o—=e

-2 1

00 == —

1

[

T

5
—-2<x<1 or 5<x<8

Polynomials

Let's go beyond quadratics and explore
equations of higher powers with a new set of techniques and theorems.

Polynomials 2T 4
Polynomials are algebraic expressions comprising terms with
non-negative integer powers of x.

P(x) = ax" +a,_;x" ' +..+ayx? +ax +a,

where q; is the coefficient of the term with exponent i. A reminder
that a coefficient is the number in front of a term. For example,
the coefficient of the term 5x° is 5.

v

Polynomial Equality &
Two polynomials are equal if and only if their coefficients are
equal.

P(x) = a,x" + a,_;x" '+ ...+ a,x? + a;x + q

Q(x) = b,x" + b, x" 1 + ...+ b,x? + b,x! + b,

P(x)=Q0(x) < a,=b, ...,ap=1b,
J

Degree of Polynomials &
The degree of a polynomial is the highest power of its terms.
degree

P(x) = a,x" + a,_x"' + ... + a,x* + a;x' + q,

The degree of the product of two polynomials is the sum of their
degrees.
degree of _ degree of = degree of

P(x)xQ(x)~ P(x) T Qx)
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Example 1:
Given polynomial P(x) = 2x* + 4x* + x — 1, find P(-3).
— P(-3)=2(-3+4(-3)+(-3)-1
=-54+36—-3-1
=-22

Example 2:
Given that 5x% + 9x — 2 = (x — 1)(ax + 4) + (x + 1)(bx + 2) for all real
values of x. Find the values of a and b.
Step 1):  Evaluate the right-hand side.
(x—D(ax+4)+ (x+ 1)(bx +2)
=ax’? +4x—ax —4+bx* +2x +bx + 2
=(a+b)x*+(b-a+6)x—2

Step 2):  Match coeflicients of the two sides.

— a+b=5 — (1)

— b—a+6=9
b—a=3 — (@)

Step 3):  Solve for a and b.

- (H+@
(a+b)+(b—a+6)=5+9
2b+6=14
b=4

— Subb =4into (1):
a+4=>5
a=1

Example 3:
Given polynomials P(x) = x* — 2x* + x and Q(x) = 2x* + 5x — 7, find
P(x) x Q(x). Hence, verify with this example that the degree of the
product of polynomials is the sum of their degrees.

P(x) x Q(x) = (x* — 2x? + x)(2x? + 5x — 7)
=2x° + 5x* — 7x% — dx* — 10x® + 14x% + 2x° + 5x% — 7x
=2x° + x* — 15x° + 19x% — 7x

degree of degree of degree of

PGx) 77 0 T T PG x QM) T°
degree of degree of  degree of

P(x) x Q(x) = P(x) T Q)

Polynomial Division
Long division can be used on polynomials to find factors.

dividend = divisor x quotient + remainder

2

x 1r 1
x+1)x3+x2+x42
- x> — x?
x+2
=esl
1
V.
Example 1:
Find the quotient and remainder when dividing 2x* — x* + 5 by x + 2.
Express the result as an equation.
2x* —5x+10
x+2) 2x* —x +5
—2x3 — 4x?
—5x7
5x% + 10x
10x +5
—10x — 20
—15
— 2 —x?+5=(x+2)(2x%—5x+10)— 15
2025 3
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Remainder Theorem T
The remainder when a polynomial P(x) is divided by a linear di-

visor ax + b is given by P (—S)

divident quotient b
P(x) = (ax +b) xO(x) + P <*;>

divisor .
remainder

S

Factor Theorem 5
The value x = —5 is a root of a polynomial P(x) if and only if

P (—é) =0
a
This means:

«If P (—S) = 0, then (ax + b) is a factor of P(x).

« If (ax + b) is a factor of P(x), then x = —Z is a solution.

Algebra

Cubic Identities {
Cubic identities provide useful shortcuts to expand or factorize
cubic expressions, simplifying complex algebraic manipulations.

Cube of Binomial

1) (x+y)* =x>+3x%y + 3xy* + y°
2) (x—y)°=x>-3x%y+3xy? — °
Sum of Cubes

1) +y>=(x+ - xy+y%)
Difference of Cubes

1) =y =(x- & +xy+y%)

J

Example 1:
Consider polynomial P(x) = 3x* — 2x* + 5x — 7. Determine the remain-
der when P(x) is divided by 2x — 3.

— Remainder = P (g)

- (E) .y §) +5(§)77
2 2 2
81 9 15
==+ =7
8 2 2
_
8

Example 2:
Given polynomial P(x) = x* + (k — 1)x + (k* — k — 2), find the value of
k for which P(x) is exactly divisible by x — 2 but not divisible by x + 1.

—  P(x) is divisible by x — 2.
= P(2)=0
2+ k-1 +K(*-k-2)=0
K+k=0
k(k+1)=0
k=0 or k=-1
—  P(x) is not divisible by x + 1.
= P(-1)#0
1P =Gk-D+E -k-2)%0
kK —2k+0
k(k—=2)#0
k#0 and k=#2
— Combine the conditions:
i. k=0 or k=-1
ii. —k#0 and k=2
- k=-1

Cubic Equations e
A cubic expression is a degree-3 polynomial that always has 3
roots. The roots can be one of these combinations:

1) 3 distinct real roots

2) 2equal real roots and 1 distinct real root

3) 3equal real roots

4) 1 real root and 2 complex roots

ax> +bx*+ex+d=0
alx+r)(x+nr)x+r)=0
X=-r o X=-r, Of X=-T3
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W
Example 1:
Using the Sum of Cubes principle show that the Difference of Cubes
principle x* — y* = (x — y)(x* + xy + y?) is true.
o x3 _ y3 — x3 + (_y)S
=[x + (=1lx* — x(=y) + (=p)’]
= (x —y)(x* +xy +y%)
Example 2:
Factorize the following polynomials.
a)  64x® — 125y° b) 27 -8(x-1)°
a)  — 64x® —125)°
= (4x)* + (=5y)°
= (4x - 5)[(4x)* — (4x)(=5) + (~5y)’]
= (4x — 5y)(16x* + 20xy + 25y%)
b) - 27-8(x-1)°
=3 +[-2(x-1P
=[3-2(x—1D][3% + 6(x — 1) + 4(x — 1)?]
=(5-2x)(9+6x —6+4x* — 8x +4)
=(5—-2x)(4x* —2x+7)
Factorizing Cubic Equations 7
Factorizing quadratics is relatively straightforward with practice,
but not so much for cubics. We need a systematic trial-and-error
approach, guided by the rational root theorem.
Rational Root Theorem
Given a polynomial with integer coefficients:
P(x) = a,x" + a,_1x" ' + ... + a1 x + q
If P(x) has a rational root, then it has the form £ where:
» pis a factor of the constant term q,. q
« g is a factor of the leading coefficient a,,.
TLDR: To find a factor of a cubic equation f(x), test all factors
p; of the constant term a, to see if f(p;) = 0.
Y
Example 1:
a)  Factorize completely f(x) = 3x* — 5x* — 12x + 20.
b)  Hence, solve g(y) = 3y° — 5y* — 12y* + 20
a) Step 1): Find a factor using rational root theorem.
— Some possible rational roots to test:
+1, +2, +4, £5, +10, £20
— Testx =1 as aroot:
f(1)=3(1)> =5(1)* —12(1) +20 =6 # 0
—  Test x = —1 as a root:
f(=1)=3(-1)* = 5(-1)* —12(-1) + 20 =24 = 0
— Test x = 2 as a root:
f(2) =3(2)° —5(2)* —12(2) + 20 = 0
= x = 2isarootof f(x).
= (x —2)is afactor of f(x).
= f(x)=(x—2)(ax* +bx+c)
2025 4
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Step 2):  Find a, b, and c via long division.
3x  +x—10
3x® — 5x% — 12x + 20
—3x% + 6x?
x® —12x
—-x? +2x
—10x + 20
10x — 20
0
- f(x) = (x — 2)(3x* + x — 10)
Step 3):
- 3x24+x-10
=3x*+ 6x — 5x — 10
= (3x% + 6x) + (=5x — 10)
=3x(x+2)—5(x+2)
=Bx-5)(x+2)
= f&x)=(x—2)(x+2)3x—5)
fG) = (x—2)(x +2)(3x - 5)

x=2 or

x—2)

Factorize quadratic expression.

x=-2 or x:E
3

— Letz=9y%

g(y) =3y —5y* —129* + 20
=32> - 522 — 12z + 20

- z=2 - z=-2 - z=5/3
yi=2 y'=-2 y*=5/3
y =42 (rejected, y* < 0) y==+J5/3

— y=%J2 or y:i\E

Partial Fractions

Partial fractions let us break down
complicated fractions into simpler ones, making calculations much easier.

Introduction to Partial Fractions &
Partial fractions are the simpler fractions obtained by breaking
down a complex fraction, making them easier to work with.

We start by revisiting the addition of algebraic fractions:

2 1
+

LN

x—1
() 1(x + 2)
T x+2DE-1) (x+2)(x-1)
C2x—=1)+ 1(x +2)
T (x+2)(x—1)
3x
x>+ x—2

decomposition

Partial fraction decomposition reverses this process by starting
with a combined fraction and splitting it into simpler parts.

3x 2 1
—_—— = —+
xX2+x—2 x+2

x—1

The specific technique used for decomposition depends on the
nature of the initial denominator.
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Case 1: Distinct Linear Factors
Denominator contains distinct linear factors.

P(x) KA B
(x—a)(x-b) x-—a

x—>b

Case 2: Repeated Linear Factors
Denominator contains repeated linear factors.

P(x) A . _B
(x—a? x-a (x—a)?
P(x) A B C
= + +
(x—a® x-a (x—aP ((x-a)
S
E];(xa rl'r1e:':;e1:2x—+6 in partial fractions
P G- P '
2x +6 A B
— = + —(1
GoDx-2) x-1 x-2 M
2x+6=A(x—2)+B(x—1) —2)
— Sub x = 1into (2):
2()+6=A(1-2)+B(1-1)
A=-8
—  Sub x = 2into (2):
22)+6=A(2-2)+B(2-1)
B=10
— Sub A=-8, B=10into (1):
2x+6 _ ___8 . 10
x=-Dx-2) x-1 x-2
Example 2:
Express m in partial fractions.
6 A B C
_ - — (1
G-1(x—2) x—1 (x—17 x-2 M
6=A(x—1)(x—2)+B(x —2) + C(x — 1) — Q)
— Sub x =1 into (2):
6=A01-1)(1-2)+B1-2)+C(1-1)*
B=-6
—  Sub x =2into (2):
6=A02-1)(2-2)+B(2-2)+C(2—1)*
C=6
— Sub x =3 into (2):
6=AB-1)(3-2)+B(3-2)+C(3—-1)*
6=2A+B+4C —3)

— Sub B= -6, C =6into (3):
6 =2A+ (—6) +4(6)
A=-6
— SubA=-6, B=-6, C=6into (1):
6 6 6 6
(x—12(x—2) x-2 C(x—1)?

x—1

Case 3: Irreducible Quadratic Factors ;
Denominator contains quadratic factors that cannot be factored
further into linear terms.

P(x)  Ax+B
x2+bx+c x*+bx+c

Case 4: Repeated Irreducible Quadratic Factors
Denominator contains repeated irreducible quadratic factors.

P(x) Ax+ B Cx+D
(x¥tbx+e)  x*tbx e (33 byt c)
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Example 1:

X+x+1
Express is partial fractions.
PSS e D rx+1) P
X+ x+1 _Ax+B Cx+D —m
P+ +x+1)  x*+1 x*+x+1

X+x+1=Ax+B)(x*+x+1)+(Cx+D)(x*+1)

1=A+C
0=A+B+D
1=A+B+C
1=B+D

- 3)-0x

0-1=(A+B+D)—(B+D)

A=-—

Equate coefficients:

= Ax® + Ax* + Ax + Bx* + Bx + B
+Cx*+Cx+Dx*+D

=(A+0O)x*+(A+B+D)x*
+(A+B+C)x+ (B+ D)

Sub A = —1 into (2):

—® 1=-1+C
—(3) =2
— @ — SubA=-1, C=2into (4):
— ) 1=-1+B+2

B=0

— Sub B =0into (5):
1=0+D
D=1

SubA=-1, B=0, C=2, D=1into (1):

X +x+1 _ —1x+0 2x +1
(E+1)(x2+x+1)  x2+1 XX +x+1
2x+1  x
Txl4x+1 xP+1

Case 5: Improper Fractions ;
All of the previous cases only apply to proper algebraic fractlons
Polynomial long division is used for decomposition if the numera-
tor degree equals or exceeds the denominator degree.

dividend remainder
P(x) R(x)
= H(x) +
Q( ) quotient Q( )

divisor divisor

Example 1:

Express

(x+ 1)(x—
Step 1):

4x3 —2x+6

1

as proper partial fractions.

Perform long division.

4x® - 2x+6
x—1

4 —2x+6
(x+1(x-1)
4x

4x3 —2x+6
—4x® + 4x

x*—1)

2x+6
2x+6

4x - 2x+6

Step 2):
2x +6

(x+Dx—-1)

Perform partial fractions.

A

(x+1)(x-1)

B

x+Dx—1

x+1

x—1

2x+6=A(x—1)+B(x+1)

Sub x = 1 into (2):

20)+6=A01—-1)+B(1+1)

B=4

Sub x = —1 into (2):

2(-1)+6=A(-1—-1)+B(-1+1)

A=-2

2x+6

—2

Sub A =-2, B=4into (1):

(x+1)(x-1)
Step 3):

Combine the results.

4x* —2x+6
(x+1D(x-1)
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