Math Hawker Digest Secondary 3
Elementary Mathematics — Algebra

1. Quadratic Equations 2. Inequalities 3. Indices

Example 1:
Solve the equation 2x* — 6x — 4 = 0.

Quadratic Equations

— 2x*—6x—4=0

Quadratic (Latin for "square") equations model many 3y =2

things, from a ball's flight to a rocket's launch. How do we solve them?

Dual Solution

37 9
Let’s recall the basics. Dealing with squares often involves two [X - -] =2+ 1
solutions: a positive and a negative one.

3 17
) 3 xX—===+]—
Solving x° =c, 2 4
x=:i:ﬁ X:§i 1_7
2 4
X =4c or x=—c
\f \f x =356 or x=-0.56

There is a refresher on mathematical terminology at the end of
these notes to ensure we're on the same page linguistically.

S Quadratic Formula

Derived from the “completing the square” method, the quadratic
formula gives a direct method for solving any quadratic equation.

Example 1:
Solve the equation (x — 7)* = 4.
- (x-7)?%=4 Solving ax? 4+ bx + ¢ = 0,

x—7=+/4 x:—bﬂ:\/bz—4ac

x=7+2 2a
x=9 or x=5

Example 1:
Solve the equation 3x* — 11x + 5 = 0.
Factorization
Some quadratic equations can be neatly factorized, aIIowmg us

— 3x*—11x+5=0

to find the solutions straightaway. —(—11) £ {(-11)* — 4(3)(5)
X =
Solving x% + bx + ¢ = 0, 2(3)
’ 11+ 61

6

x*+(m+n)x+(mxn)=0 x=314 or x=053

(x+m)(x+n)=0
X=-m or x=-n

y Example 2:

Show that the quadratic formula can be derived using the “completing

Example 1: the square” method.
Solve the following equations.

— ax*+bx+c=0

a) x(x+2)=3x+2 b) é—1:2x+3 ¢
x x? + —x =——
a
a) — x(x+2)=3x+2 b - S _1-2x+3 < 3) <£>
2 _ 9= x , 2 2
F === 6 —x = 2x* + 3x ba lf ¢
=D+ 1) =0 e i () =(2) -
x=2z or x=-1 X +2x—3=0 , ;
(x+3)(x—1)=0 x=-Z (2_),5
x=-3 or x=1 a ¢ “
_ —b + Vb? — 4ac
2a
Completing the Square \ .
Example 3:
This method rewrites a quadratic expression as a perfect square Solve th i 5  x+4 _ 3
often used when the expression doesn't factor easily. olve the equation ~— = —7— = >X.
quadratic expansion completing the square Step 1):  Ensure the domain is well-defined by excluding
values that make a denominator 0.
(x +b)? = x* + 2bx + b? x? + 2bx = (x + b)? — b? = % = x#3
3 2 2 5 P
‘\_/I Step 2):  Solve the equation.
rearrange
4 B 5  x+4_
x—3 4
5(4) — (x + 4)(x — 3) = 3x(4)(x — 3)
13x% —35x —32=0
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—(~35) + /(=35)? — 4(13)(-32)
X =
2(13)
_ 35+ /2889

26
x=341 or x=-0.72 (bothx #3.)

Example 4:
Whitney plans a 75 km journey from Amsterdam to Rotterdam. She can
use a bus or a car to travel between the cities. The car’s average speed is
20 km/h faster than the bus’s. Let the bus’s average speed be x km/h.

a) Interms of x, write down how long (in hours) it would take Whit-
ney to reach Rotterdam if they go by car.

b) If they traveled by bus instead of car, they would arrive exactly
1 hour later. Formulate an equation to represent this fact, and show that
it simplifies to x* + 20x — 1500 = 0.

¢) By solving the equation, find Whitney’s travel time by car in hours
and minutes.

a) — Let scar = Speed of car
tcar = Time taken by car
d = Distance of journey

—  Scar = X + 20 km/h

d 75
= lear=— = h
Scar Xx+20
75
b) = tbusz_h
X
— lpug —fear = 1
E_ 75
X x+ 20

75(x + 20) — 75(x) = x(x + 20)
x? 4+ 20x — 1500 = 0

¢) — x*+20x-1500=0
(x+50)(x—30)=0
x = 30 (bus speed can’t be negative)
75

x+ 20
75

30 + 20
1.5h

= 1 hour 30 minutes

tcar -

Inequalities

Hey, where'd the equal signs go?

Algebra

Compound Inequalities .
Compound inequalities involve multiple conditions identified with
overlaps on a number line.

1) Arrows indicate the ranges satisfying each condition.

2) Shaded regions show where both conditions are satisfied.

3) Open circles mean the endpoint is not included; filled circles
mean it is.

b 1 <x<b i
< : as X ]
< - 5
|
1
b

Solving Inequalities Y
Inequalities are solved similarly to equations, but they produce
a range of solutions instead of a single value. Remember to flip
the inequality sign whenever you multiply or divide by a negative
number!

Solving ax +b < ¢,

It @ > 0 hah R = it oIt > S=2
a a

S
Example 1:
Determine the values of x that satisfy the following equations.
a) 4x—-6<3x b) 3x+11>5x-5
a) — 4x—6<3x b) — 3x+11>5x-5
4x —3x <6 3x -5x>-5-11
x<6 —2x 2> -16
x<8
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Example 1:
Determine the values of x for which 4x +1>3x -2 > x + 6.

— 4x+1>3x—-22x+6

— 4x+1>3x-2 and - 3x—-22x+6
x>-3 x >4
o 1
. A
3 4
— x2>4

Example 2:
Determine the values of x for which 3x + 9 < 7x + 5 < 5x + 15.

— 3x+9<7x+5<5x+15

— 3x+4+9<7x+5 and — Tx+5<5x+15
x>1 x<5

-4 -0
v +4+0O -

- 1<x<5

Example 3:
Determine the values of x for which 2x +5 < x+ 5 < 4x — 4.

— 2x+5<x+5<4x—-4

- 2x+5<x+5 and — x+5<4x—4
x<0 x>3
—e
. o —
0 3
— No solution.

Example 4:
Wen Yi plans to donate 10 hampers to a local charity. She can choose
between a large hamper that costs $25 each or a small hamper that costs
$15 each. She does not want the total cost of all hampers to exceed $200.
In addition, Wen Yi would like to donate more large hampers than small
hampers. Can she meet these conditions?

Step 1):  Set up constraints.

— Let [ = Number of large hampers

s = Number of small hampers

— I+s=10

s=10—-1 —
— 251+ 155 < 200 —
- I>s —3)

Step 2):  Solve simultaneous inequalities.
— Sub (1) into (2):
250+ 15(10 — 1) < 200
10 < 50
I<5

— Sub (1) into (3):
[>10-1
[>5

2025 2



Secondary 3 - Elementary Mathematics

Step 3): Combine the constraints.

o—
O

5

— There are no solutions that satisfy both [ < 5and [ > 5.

She cannot meet these conditions.

Indices blow numbers up exponentially.

Laws of Indices
The laws of indices simplify operations that involve powers.

Definition Laws
1) a"=axax..xaxa 1) a"xa"=ad"™"
Sz oral el
m am — T
Special Exponents 2) e a
1) ao =l 3) (am)n = gmn
2) a‘":l 4) a'xb"=(axb)
a" a a n
= n — (n & _—= —_
o &=dw=@ 9 5=(3)
S
Example 1:
Simplify the following expressions. y?
3.,\2
3 5/2 , o2 (F’y)? = —
a) (53 % l) b) 477 x 27 ) _z
52 (—3)* x%z
133 ) yz
a) — (5°x ¥> (x*y)? x -
=Exs 9 T T
_ 5(3—z)x3 = (xﬁyZ)(yZZ—4)(xzz)—1
— 53 — x6—2y2+22—4—1
=125 =x'y'z™
5/2 2)
by - 474 x 2
(=3)
(22)5/2 x 22
S (=D x3)
25+2
=
=1.58
Compound Interest g
Compound interest is calculated using powers to represent expo-
nential growth in investments or loans.
« P :initial amount (principal)
< r )” « r%: interest rate
A, =P(1+— i )
100 e n : number of time points
« A,: total amount after n time points
This equation applies only to compound interest, where interest
is earned on both the principal and accumulated interest. Simple
or other forms of interest use different formulas. )

Algebra

5
- 563:3000<1+L> ~ 3000

100
563 + 3000 ( r )5
— = |1+ —
3000 100
J1188 =1+ —
100

r =100(1.035 — 1) = 3.5

— The bank’s interest rate was 3.5%.

Standard Form

The standard form represents large or small numbers compactly
using powers of ten.

100 ... 00.0 = 1.0 x 10™
\_Y_I

m

0.00..001 =1.0x 107"
%_J

m

Example 1:
Express the following numbers in standard form.

a) 351,120,900 b) —0.000105

a) — 351120900 b)) -
=3.51 x 100000000
=3.51x108

—0.000105
_ —1.05

= 10000
=-1.05x10"*

Sl Prefixes ;
If the standard form reminded you of Sl units, you were spot on!

Example 1:
Rachael places S$2, 000 in the bank for 4 years at 5% per annum, com-
pounded annually. How much does she have at the end of the 4 years?

4
— A, =2000 (1 + i) = 2431
100

Example 2:
Cyrus earned S$563 after placing S$3, 000 in a bank for 5 years that of-
fers interest compounded annually. What is the bank’s interest rate?
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Standard Form  Common Name S| Prefix ~ Symbol Example
102 trillion tera- T terabyte
10° billion giga- G gigahertz
10° million mega- M megapixel
10° thousand kilo- k kilogram
1073 thousandth milli- m milliliter
10°° millionth micro- " micrometer
107° billionth nano- n nanosecond

102 trillionth pico- p picofarad
S
Example 1:

The orbit of Halley’s Comet around the sun is highly eccentric. Its clos-
est point is 88 million km from the sun, while its farthest distance is
5.2 billion km. Find the ratio between the shortest and farthest distances
in standard form.
— 883x10°x10° : 5.2x10° x 10
88 : 5.2x10°
1:5.91x10'

Example 2:
A submarine travels at a constant speed from Port P to Port Q. During
the journey, it passes Island I in 7 hours. The distance from Port P to
Island I is 4.2 x 10* meters.

a)  Find the distance the submarine travels in 24 hours. Present your
answer in standard form.

b)  Given that the distance between Port P and Port Q is
1.08 x 107 meters, determine how long (in days) the journey will take.
a) — Let s = Speed of submarine
tp; = Time taken to travel from P to I
d, = Distance traveled in 7 hours

d 4
_ SZLZM:&OXW
tpr 7
dyy = sx24
= 6.0 x 10° x 24

= 1.44 x 10° meters

2025 3



Secondary 3 - Elementary Mathematics

dpg
b - =
~1.08x 107

6.0 x 103
=1.8x10%

= 180 hours
= 7 days 12 hours
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Algebra

Glossary fiws)

What'’s the difference between

1. an expression, a function, an equation, and a term?

Expression: A combination of numbers, variables, and operations
without equality or inequality (=, >, <, <, >, #) signs.
X2 +2x+1
Function: An expression with a “label” that defines the input (often x).
fx)=x*+2x+1
Equation: A statement where two expressions are equal.
K4+2x+1=4x—1

Term: A single part of an expression, separated by + or — signs.
2x

2. asolution, a root, an intercept, and an intersect?
Solution: A value of the variable that makes an equation true.
x=—2 solves 2x+1=-3

Root: A solution when an expression (or function) is set equal to zero.

x=-2 isarootof 2x+4
asitsolves 2x+4=0

Intercept: A point where a graph crosses the x-axis or y-axis.
y =2x+4 intercepts the x-axisat x = —2
and the y-axisat y =14
Intersect: A point where two curves (or lines) meet.
y=2x+1 intersects y=-3 at x=-2

3. avariable and a constant?
The difference depends entirely on the context.

Variable: Value that can vary within the context of a specific problem.
Constant: Value that is fixed within the context of a specific problem.
Indeed x is a variable while a, b, and ¢ are constants in
f(x)=ax*+bx+c

However, x is a constant while 6, 6;, and 6, are variables in
£(O) = 0,x* + 0,x + 6,

In the first example, we are thinking in terms of a quadratic equation

and trying to solve for the variable x given constants a, b, and c. In

the second example, we are thinking in terms of a linear model (not

covered in syllabus) and trying to find the optimal values for variables

20, 0,, and 0, given constant x observed through (already collected)
ata.

.
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