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Secondary 3

Elementary Mathematics — Graphs

1. Coordinate Geometry

Coordinate Geometry

What happens when algebra meets geometry on
a flat plane? French philosopher René Descartes has the answer for you!

2. Quadratic Graphs

Coordinate Geometry Basics L5

Coordinates P(x, y) mark a point P’s position along the x- and
y-axes. Two points form a line segment and its length can be
calculated using the Pythagorean theorem. The gradient tells us
how steep the line segment is.
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Equation of a Line 5
A line consists of infinitely many points, and its equation is a rule
that every point on the line satisfies. A line’s equation connects
its slope and y-intercept to any point that lies on it.
coordinates
=mx+c
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gradient y-intercept

3. More Graphs

Gradients and Lines
Gradients dictate the direction of lines.

Positive/Negative Gradient Horizontal/Vertical Line

J

Example 1:
Given points P(—3, 1) and Q(5, —6), find the length and gradient of line
segment PQ.

— PQ =J[5-(=3)]* + [-6 — 1]* = V113 = 10.64 units

—-6—-1 -7
Mpp = =L 0875
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Example 2:
Points P and Q have coordinates (4, —3) and (2, 1), respectively, and
point Z lies on the x-axis. Find the possible coordinates of Z such that
PZ =20QZ.

- PZ=\lx—4P+[0-(-3)F
— Jr—ap+9
- gz=G- 201"
N
— Since PZ =2QZ,
Jax -4 +9=2J(x-22+1
(x—4P+9=2"(x—-2)?*+1]
X2 —8x+16+9=4(x*—4x+4+1)
—3x*+8x+5=0

_ —8+/82—4(=3)(5)

— x=

2(=3)
_4, 3
3 3

x=319 or x=-0.523

— The possible coordinates of Z are
(3.19,0) and (—0.523,0).
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Example 1:

A line crosses the x-axis at x = 3 and the y-axis at y = —2. Determine
its equation.

Yo=h _—2-0_2
— m= —————=-——= -
X, — X, 0-3 3
2
= =-x-2
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Example 2:
Given points P(6,4), O(x, —7), and R(2,4x), find the possible values of x
if the gradient of PQ equals the gradient of QR.

Mpgy = Mgpr
-7-4 _ 4x-(-7)
x—6 2—x

—11(2—x) = (4x + 7)(x — 6)
4x? —28x—20 =0
xX—7x-5=0

L —(=7) £ J(=7)* — 4(1)(-5)
B 2(1)

_7. 46

2 2
x=7.65 or x=-0.653

Quadratic Graphs

Let's explore a visual way of understanding quadratic equations!

Quadratic Graph Anatomy
The quadratic graph is a parabola (symmetric “u” or “n” shape).
It always has 1 y-intercept and can have 0, 1, or 2 x-intercepts.
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Example 1:
The table below shows some values of x and the corresponding values
of y, where y = —x* + 2x + 1.

x -3 -2 =il 0 1 2 3 4

y —14 1 =7

a)  Complete the table.
b)  Using a suitable scale, plot the points in the table and join them
with a smooth curve. Mark the line of symmetry.

c¢)  Use the graph to find the x-intercepts and the coordinate of the
maximum point.

X =3 -2 =il 0 1 2 S 4

y -14 =7/ —2 1 2 1 -2 =7/

[e <]

ono

B

=)}

1
1
¢c) — x=04 and x=24

—  Maximum point is (1, 2).

Example 2:

a)  Factorize y = —2x% + 4x + 16.

b)  Hence, sketch the graph, indicating all axes intercepts, turning
points, and lines of symmetry.

a) — y=-2x"+4x+16
=-2(x*—2x —8)
=20x—-4)(x+2)

7
T X =1
i(1,118)

==Y
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Alternate Forms
Factorized and completed square forms of quadratic expressions

help directly identify key features of the graph.
y = a(x = h)(x — k) y=alx-p)*+q
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Graphs

Example 1:
A quadratic curve has a turning point at (7, —3) and a y-intercept at
y = 95. Find its x-intercepts.

- y=ap’+q
95 =ax7° -3
a=2

- y=alx-pl+gq
0=2(x—-7)3-3

x=7% 2
2
Example 2:

An arrow is shot straight up from ground level with an initial veloc-

ity of 96 m/s. Its height y after time ¢ of being shot can be modeled by
y = —16t* + 96t.

a)  Using a suitable scale, plot the graph of y = —16t* + 96t for
0<t<L6.

b)  Use the graph to find when the arrow hits the ground.

c¢)  Use the graph to find the arrow’s maximum height and time taken
to reach said height.

x 0 1 2 3 4 5 6 ‘
y 0 80 128 144 128 80 0 ‘
Height (m)
56

Time (s)
=il 1 2 3 4 5 6 7
b) — Arrow hits the ground att = 6 s.
¢) — Maxheightisaty =144 m.

— Time takenist =3 s.

More Graphs

More fancy curves and their properties!

x-intercepts always exist if the
quadratic expression is factoriz-
able, thus this form always has
2 x-intercepts.

This form does not show the x-
intercepts directly. They only exist if
the curve crosses the x-axis, which
happens when:

1) a>0 and g<0

2) a<0 and ¢g>0

Cubic Graph

Cubic graphs are the next step after quadratic graphs and can
have 2 turning points.

y=ax’+bx*+cx+d
YA Y4

>

([
/N R A
0 \,L/ x \} /

a>0 a<o

<Y

Turning points are points where the curve changes direction. We
call them turning points here instead of the usual minimum or
maximum points because the curves extend beyond them.
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Intercepts of Cubic Graphs AT 4
Cubic graphs always have 1 y-intercept and can have 1, 2, or 3
x-intercepts.

Case 3:
3 x-intercepts

Case 1: Case 2:

1 x-intercept 2 x-intercepts

AVRIAN

P | =

[ MG

y
Turning Points of Cubic Graphs 2T 4
Determining the number of turning points of cubic graphs is gen-
erally not straightforward, but there are two cases.
Case 1: Case 2:
0 turning points 0 or 2 turning points
y y
X x
y=+x>+x*+x y=+x>-3x* + x
All coefficients have Coefficients have
the same signs. different signs.
J

Graphs

Reciprocal Curves d
Reciprocal graphs feature vertical and horizontal asymptotes—
lines the curve approaches but never touches. The x- and y-
axes are the asymptotes in a basic reciprocal curve.

_a =2
Y x Y x?
y }’T
y=0
horizontal
asymptote
> ——
0 X 0 X
x=0
vertical
asymptote

These graphs show the case when a > 0. For a < 0, the graphs
are reflected vertically.

Example 1:
Using a suitable scale, plot the graph of y = x* + 3x* — 2x + 1 for
-4 <x<1.5.
a)  Use your graph to find the coordinates of the turning points.
b) By drawing a line on the same axes, solve x* + 3x* — x —2 = 0.

‘ X —4 =% -2 ! 0 1 %5

8.125

‘y 7] 7 9 5 1 3

N ul

L o oo

N

[
|
4 -
|

PR
(o RN« NE" NN \*] ; %

a) — Turning points are (—2.3,9.3) and (0.3,0.7).
b) - B+3x2-x-2=0
X +3x*-2x+1=-x+3
X -2 1
y 5 2
- x=-31, x=-0.75, or x=09
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y
Exponential Curves T
Exponential curves are always monotonic (ever-increasing or
ever-decreasing) and approach a horizontal asymptote (x-axis)
with no turning points.
y = ab*
YA YA
Fo
infinity
__4a
asymptote 0 X 0 X
b>1 0<b<1
Again, these graphs show the case when a > 0.
S

Example 1:

The table below shows some values of x and the corresponding values

of y, where y = iz
x

x —4 -2 =il —0.5 0.5 1

y 0.25 1.00

a)  Complete the table, leaving your answers to 2 decimal places.

b)  Using a suitable scale, plot the points in the table and join them
with a smooth curve.

c)  Use the graph to find y when x = 0.7.
d)  Use the graph to find the values of x when y = 0.6.

x —4 -2 =il -0.5 0.5 1 2 4

Y 0.06 0.25 1.00 4.00 4.00 1.00 0.25 0.06

i

N2

y=2

x=+13
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Tangents

\T4

Tangents are lines that touch a curve at exactly one point, repre-

senting the curve’s gradient at that point.

YA
tangent
y=mx-+c

m=0

At turning points,

YA

3¢

_ point of
intersection

curve

y=f(x)

"

(=}

Example 1:

Using a suitable scale, plot the graph of y = x* — 2x? — 11x + 5 for

-3 <x<5.

a) By drawing a tangent, find the gradient of the curve at x = —1.
b)  Use the graph to find the second intersection point between the

tangent and the curve.

Example 1:

The graph below shows the speed-time graph of a car.

Speed (km/h)

80

60

|
|

40 \

N

20

N

AN

2 4 6 8 10

1

Time (h)
2

Graphs

The car accelerated to the speed limit before remaining at a constant

speed during a traffic jam for 2 hours.

a)  Determine the speed limit and the car’s speed during the jam.
b)  Calculate the car’s average speed for the entire journey.

X

=

-2

a) — The speed limit is 90 km/h and
the car’s speed during the jam was 30 km/h.
b) — Total Distance

:%x1><90+90><2+30><2

+<30x2+%x2x20>+%x4x50

y = 1 13 5 -7 | -17 | —19 | -7 25
94
oY ]
~ 20 r
\ v /
— /
$ 2t ENGsd 3
30 |
a) - mz)’z_}/1:13—5__4
x—x —-1-1
b) — Intersection point is at (1, —7).
Applications of Graphs g

Curves model real-world phenomena. Tangents and gradients
represent rates of change, while areas under curves represent

accumulated quantities like distance, energy, or profit.

Speed
(m/s)
A
SENT AN
Acceleration ' '
_wos [P
RE— l ! Distance
sl --------- 1 [ i E
fa) I ! _ Time
0 5 o T (s)
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=45+ 180 + 60 + 60 + 20 + 100

= 465 km
—  Average Speed = % = % =42.3 km/h
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Geometry part 1/
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